Thursday, August 16, 2012

Thirty teams compete to interpret three families' genomes


BOSTON,today announced that -- DNA sequencing is rapidly getting faster and cheaper, but it's still unclear how physicians and patients will be able to use this information. In a contest led by Boston Children's Hospital, 30 teams from around the world are vying to interpret the DNA sequences of three children with rare conditions whose cause remains a mystery—with the goal of establishing "best practices" for interpreting genomic data.

Participants in the competition, known as the CLARITY challenge, range from small biotech startups to the National Institutes of Health (see list below), representing the United States,CanadaChinaIndiaIsraelItalyGermanythe NetherlandsSingaporeSloveniaSpainSwitzerland and Sweden.

Results of the challenge will be announced in November at the American Society of Human Genetics annual meeting in San Francisco (Nov. 6-10) by the contest's organizers—David Margulies, MD, executive director of The Gene Partnership at Boston Children's, Isaac Kohane, MD, PhD, director of the hospital's Informatics Program, and Alan Beggs, PhD, director of the Manton Center for Orphan Disease Research at the hospital.

The goals of CLARITY (Children's Leadership Award for the Reliable Interpretation and Transmission of Your genomic information) are to address technical and bioinformatics questions in analyzing DNA sequence results, bring standardization to the analysis of genetic variants and generate a comprehensive, actionable report that can guide decision-making by doctors, genetic counselors and patients. Contestants have a deadline of September 30 to submit their findings and reports.

"The last major barrier to widespread clinical use of DNA sequencing is the creation of accurate, understandable interpretations of sequence findings for doctors and patients," says Margulies, also affiliated with the Center for Biomedical Informatics, Harvard Medical School. "The goal of this contest is to define norms, standards and models for reporting findings from exomes and genomes. We are excited about the number and quality of participants, and we look forward to seeing their entries."

All contestants have been given raw DNA sequence data (both whole-genome and whole-exome sequences) and de-identified clinical data from three children and their immediate relatives identified by The Manton Center for Orphan Disease Research at Boston Children's.

Of the three children, two have a neuromuscular disorder and the third a cardiovascular disorder. While all three are believed to have a genetic cause for their disorder, they have come up negative on all known genetic tests.

"Traditional genetic tests examine our genes one by one, requiring doctors to have a good idea ahead of time which of our roughly 20,000 genes is the likely cause," says Beggs, also a professor of Pediatrics at HMS. "The beauty of whole-genome sequencing is that it provides results for virtually all of our genes at once. The challenge for our contestants is to pick out that one disease-causing mutation from the vast numbers of genetic differences that make each of us unique."